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ON AFPRUXIMATE EXPRESSIONS FOR THE EXPONENTIAL INTEGRAL
AND THE ERIOR FUNCTION

Richard Bellman

ﬁl. Int roduction,
In many important zpplications of mathematical physics, the final

numerical answer depends upon the eviluation of a Laplace transform
m -
(1) aly) = Jc') eV e(x)x, Re(y) > 0.

Integrating by parts n times, the resu’t is

(nel \
(g) g(y) = £-%l - i%gl + see o f—a-)m * %fme-vf(nl(x)u.
y Y y o

If £(0) # 0, we may use the first n terms as an approximation to g(y).
The error term is the integr:l on the rightehani side of (2) which is

bounded by

(3) ) ey |67 ()
O

for y real and by

(4) 1™ max [P (x)] / re(y) ,
Ox<ao

in case y is complex. In many cases of importance, the series

o «)
(5) s(y) = S K0y /yK*2

i k=0
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is divergent for 2ll y. Consequently, in order to make maximum use of
(2), n must be chosen as a function of y to minimize the expressions
in (3) or (4). The fact that S(y) is a divergent asymptotic series as
y —>® imposes a lower bound on the magnitude of the error tem,

The question arises then as to whether it is possible to obtain
a better approximation to g(y) than that given by (2) using some
rational function of 1/y, with coefficients determined by the f(k)(O).
One way of obtaining those rational approximations is that of expanding
S(y) into a formal continued fraction and using the n-th convergents,

The purpose of the present note is to indicate another method
which under all circumstances yields an error term less than or equal
to that given by (3) or (4), and in general may be expected to improve
it considerably. After indicating the general method, we apply it to

the two most commonly encourtered non-elemertary transcendents

(6) E,(¥) J‘ —dx-e"f £

e "y g l/h (@ =XV

1 , 0 -x2 /
e dx = dx .
o o/Zn fo  (1ex)/?

1l - Erf(y) =

The following result is obtained:

Theorem: If y > O, there exist for each n > 1, polynomials in %, Q (¥),

R(y) with the properties that

Jo lox QZ 5 22-1.1 n+l Qn(Y) 27.n¢l ynol d
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where
y 0 ast e X it
8 P = + ’
(8 a QY 1% ay
2n-k*1 n-)-:01<(n’ 112 2 l2>
® 2 ‘ Tr 2 + ’
(b) a =n [(n..l-k)!])' .5 2Z + 1
P - -iv) -n-l
(&) R = 7y0) + 2 AT ) = a0
k-l
(@ R - 2 (-1)¢ 21 y(£41), kol, 2, 0,
=0

If vy is complex, the right-side of (7) is replacec by
!
(9) “
T 13,()] Re(y)

A similar result holds for any integral of the form

,® -Xy
R o Ml
+ X

Applied to the integral in (7), Il(;,'), the method liscussed in (2) et seq,
yields the oound n!/yml. The best possible bound is obtained by taking
n = [y, yielding an error tem azpproximately equil to e.ym « The best
possible bound obtained from the atove theorem is obtained by taking

n=2y and is approximately e-“y;\/zﬁy .



Although these functions in the cases a = 1/2 and 1 have been
extensively tabulated for real y, there may still be some practical
application of the inequalitices we obtain, since in several important
applications thes:. functions occur with complex argument. We discuss

below a device whizh may be employed if Re(y) is small,

§2. The method.
Let us consider first ihe simplest case where f(0) # 0, y is
real, and we will be satisfied with an approximation with an error of

order 1/ y2 as y—>® ., Integrating by parts orce, we obtain

10,1 [P ey
(1) g(y) - 3’\/0 e rl(x)dx

S (C)RPY ’)w"‘yrl(). £(x) + b|dx
y yo° [x allx ]

a e b
-_f e f(x)ax - = .
y 0 y

From tnis follows

| A £0) . by 1 [P xyl.1

(2) g(y) \105)-<—‘y—10y—2)-;b/0 o™ [(x) + af(x) + bJax , -
wl.ence

(3) ) (10 8- <£§,9)' . %) < Max |fH(x) + af(x) + v /57 .

Yy Oxx<

The ;irameters 1 and b are now to be chosen so as to minimize the

right--iand side, In gereral, this i3 a iifficult problem, which we do not
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propose to discuss here, Nevertheless, in many cases, a few trials will
yleld values of a and b which appreciably reduce the error term,

Let us now proceed to the general case, After n-integrations by
parts, we hava

a
(&) g(y) = P (y) ¢ L,;J; e (™) (x)ax,

v

where we have set

n-1
(5) P (y) = kzo k) (gyy~(ke1) e 2k et

we now write g(y) as follows:

@ .
(6) gly) = 7 (y) ¢ %;L/; e [f(n)(x) ? alf(r"l)(.() s oeeea f(x)e aml]dx

n @
- ‘15 2. ai,_/ o () (xyux -
y =l 0 y

, - ® gy g(ne)
Utilizing (4) to eliminate the integralst/O e f (x)dx, this leads

to the inequality
max el v a ) e va tx) e e
R (y)| Ox<oo

8()’) - < % ’
“al¥)] y™ e, 0]

01'

(7)

where we hLave set

(8) (5) =1+ S a yt
Q - *
ny i_laiy

n
. — =4 8% -hi=1
R (y) =P (y) 1%1 ag vy TPy ma gy .




The error term depends upon the polynomial Qn(y) and the functional

( (n-1 '
(9) cn(f) » Haiin o;;:m |f n)(x) 5 alf n )(x) MO0 .anf(x) & anvll .

We may conceive of cn(f) as a measure of the deviation of f(x) from a

funct.ion of the form

bkx

N
(10) h(x) = z Pk(x)e ’
kel
where each pk(x) is a polynomial in x,
In the succeeding section we determine cn( f) for the case where

f(x) =1/1+x,

§3. Application to the Exponential Integral.
Referring to (6) of §1, we see that it is sufficient to “reat the

Laplace transfom
@® =Xy

(1) ) = [ e
0

Consequently, we wish to determine

n
(2) Min Max — - 1 ~adl AL __]:_;_n s (-1)° a gl
8, O<x<co (1+x) (1+x)
Upon setting l}x 5P ;x' » this reduces to
1 n
nl (Lex)™t  (n-1)ta,(1+x)
(3) Min Max 1 X *al A R (_l)n i )
ai 'lsxﬁl 2n’ 2n n+l




Since the degree of the polynomial is (n+ 1) and the coefficient of the

n+l

highest degree term is n} /2 ~, it follows that the minimal polynomial

is the (n+ 1)st Chebychev polynomial

(4) ni Tn*l(x) . n} cos(n+1l) arc cos x

2"’ 22“’1

nl (1 x)n¢1 (n=1)1 al(lo x)n n
* n+l - PLL ¢ eeee (F1) dhel ?
2

and that

/1 2n+l
(5) calpis) =t/ 20

Referring to (7) of the previous section, we see that before we can
apply the inequality with confidence, we mus: know sonething about the
location of the roots of Qn(y) = 0, Using (4), we shall determine “he a
and show that they are all positive, whence Qn(y) >1 fory >0,

Forn =1, 2, 3, the roots of Qn(y) = 0 are all negative, and we

hazard a juess that this is true in gereral., This result, if valid, would

be of importance in applying the inequility to the case where y is complex,

Since
(k
’ n+l Tn*i (=1) (1« x)k
(6) Tn*l(xl - Tn*l\-l o (1" X)) - kgo kl ’

we obtiin from the identity of (4),

Nnehe+l (k)

(7)

2!1-';(*1 N 2n01 %1 *
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(k)
To determine Tn*l (-1), we use the fact that Tn+1(x) satisfies the

differential eguation

91 (%) - xT

(8) (1-x (x) + (n+1)? To(x) =

n*l

Hence Tﬁ&{(x) satisfies the equation

(9) (1- 218 () = (e 1 (x) o (n02)2 - W)
Thus
(10) (k¢1) 1) = - [Fn. 1) l (k) (-1)

n*l 2k ¢ l .J n’l ’

whence finally

(11) ) () - (-1)“‘k*1‘1T;<fn';§)’ - >, k=1, 2,
KH

= (=1 k s 0.

Subst.ituting in (7), we obtain

*lak n+l=k 2 2
ny 27 (e1)* - 2 :
12 - , k#ne+l,
(12) ak [(xnl-k)!]2 Il < <t ¢l ,/ "

= n! , K =n+l,

This completes the proof of the theorem 3tite! above,
1. Re(y) 1is swall, the term 1/Re(y) miy preatly increase the error

termm, particularly for small n. We may overcome this to some extent by
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writing
L@ ® =Xy [ P a,(n=1)! r
[ Ve e - A [Tl L))
0 y 0 (Lex)® | (lex)" (1+x)
minus the appropriate terms,
From this we obtain as a bound
n

(14) Min Max |+t :fl ¢ e (21) an_l! /.yln - 2,:{ =

ay O<x<oo | (1+ x) 2 lyl
which, if Re(y) is small, will be liess than nl/2"2r”1|yln Re(y).
§L. Application {0 the Error Function.

Referrins to (6) of gl, it is sufficlent to consider
(1) ) - [ 2
1 gly) = | dx .
Jo (lox)l <
In this :ase, we have tle proolem of determining
|
(2) Min Max 1™ (x) v a D0 v v a t(x) a |,
1 n nel’

a4 O<x<m

where f -1/2
re f(x) = (1+x) . Taking a_,; = 0, we obtaln as s btourd

/1 e
-1/2 /(3) (\%) (~~n21)’ cee s a>
n

(3) Min Max [(1l+ x)
ai OSX((D K (1 « x)n

1e3:. «-« (2n=1)

SMin Max A 0--003I
a; Ox<a 2" (1 4 x)" n

13 .o (on-1)
on 2n-l

H
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Similarly, we can obtun bounds for the general integral

© -
(4) L, = [ *—u,
L0 (lex)
or integruls of the form
© _-xy-x"
Y

(5) J (y) - / dx ,

# O 1ds x)a



